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Overview

These notes grew out of the Erasmus Course on advanced valuation the-
ory given at the University of Aarhus from March 14 to March 17, 2011. I
wish to thank all participants for many questions during the lectures and in
particular Professor Eva Vedel Jensen for the invitation and the organiza-
tion of this event.

Lecture 1: Translation invariant valuations
We will study the space of translation invariant continuous valuations.

The first main theorem is McMullen’s decomposition theorem which we will
prove.

Lecture 2: The Klain embedding
We will prove Klain’s characterization of the volume. As a corollary,

we obtain a simple proof of Hadwiger’s characterization theorem. Klain’s
theorem is also quite useful to describe even translation invariant valuations
by functions on some Grassmannian manifold.

Lecture 3: Algebraic structures on the space of valuations
We formulate Alesker’s irreducibility theorem and deduce some important

corollaries like McMullen’s conjecture. Then we study some geometrically
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2 ANDREAS BERNIG

natural algebraic structures on the space of translation invariant valuations:
a graded product, a convolution product and a Fourier transform relating
these two.

Lecture 4: Integral geometry of SO(n) and other groups
If a group G acts transitively on the unit sphere bundle of a vector space

V , then the space of translation invariant, G-invariant continuous valuations
is finite-dimensional. The best known and classical case is G = SO(n).

We will show in detail how the material from the preceding lectures shed
new light on several well-known theorems like Hadwiger’s characterization
theorem and the principal kinematic formula. The main theorem is the
fundamental theorem of algebraic integral geometry.

Literature: As background for lectures 1 and 4, we recommend the books
by Schneider [15] and Klain and Rota [13]. Most of the material presented
in this lecture series is also described in the two survey papers [10, 5].

1. Lecture 1: Translation invariant valuations

Let V be a finite-dimensional vector space and denote by K(V ) the set
of compact convex subsets of V . A valuation on V is a map µ : K(V )→ C
which is finitely additive in the following sense:

µ(K ∪ L) + µ(K ∩ L) = µ(K) + µ(L)

whenever K,L,K ∪ L ∈ K(V ).
A valuation µ is continuous if it is continuous with respect to the Hausdorff

topology on K(V ). It is translation invariant if µ(v + K) = µ(K) for all
v ∈ V .

Now suppose V is a Euclidean vector space of dimension n. Then µ is
called motion invariant if µ(ḡK) = µ(K) for all Euclidean motions ḡ.

An example of a motion invariant valuation is the intrinsic volume µk
(k = 0, 1, . . . , n). It is defined by

µk(K) := cn,k

∫

Grk V
volk(πLK)dL,

where πL : V → L is the orthogonal projection and where the normal-
izing constant cn,k is chosen such that µk(K) = volk(K) whenever K is
k-dimensional. The measure dL on the Grassmannmanifold Grk V (which
consists of all k-dimensional subspaces of V ) is the Haar probability measure.

Hadwiger’s famous characterization theorem (see Lecture 2) states that

the space ValSO(n) of motion invariant continuous valuations is of dimension
n+ 1, where n = dimV . The only natural choice (up to scale) of a basis of

ValSO(n) consists of the intrinsic volumes µ0, . . . , µn. From Hadwiger’s the-
orem, the array of kinematic formulas, mean projection formulas, additive
kinematic formulas and many other results can be obtained in an elegant
and simple way.
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Looking at the definition of µk, it is clear that µk is homogeneous of
degree k, i.e. µk(tK) = tkµk(K) for all t > 0. Intuitively, µk scales like a
k-dimensional volume.

In general, a translation invariant valuation µ is called k-homogeneous
or of degree k if µ(tK) = tkµ(K), t > 0. As an example, let µ(K) be the
k-dimensional volume of the orthogonal projection of K onto some fixed
k-dimensional subspace L ⊂ V . Then µ is of degree k.

Let us introduce some notation. The space of translation invariant, con-
tinuous valuations on V is denoted by Val. The structure of Val and its
relations to kinematic formulas is the main focus of these lectures. A first
and trivial observation is that Val is a vector space. It is of infinite dimension
(provided n > 1).

The subspace of k-homogeneous valuations in Val is denoted by Valk.
Hence µk ∈ Valk.

The main result of the first lecture is the following theorem.

Theorem 1.1 (P. McMullen, 1977 [14]). Each valuation φ ∈ Val can be
written uniquely as

φ = φ0 + . . .+ φn

with deg φk = k. In other words,

Val =

n⊕

k=0

Valk .

Proof. (1) Uniqueness: Let φ = φ0 + . . . + φn = φ′0 + . . . + φ′n. For
K ∈ K(V ) and t ≥ 0 we obtain

φ(tK) = φ0(K) + . . .+ tnφn(K) = φ′0(K) + . . .+ tnφ′n(K).

Comparing coefficients, we obtain φk(K) = φ′k(K). Since K is arbi-
trary, φk = φ′k.

(2) Existence: Recall that a polytope is the convex hull of finitely many
points. By the Weyl-Minkowski theorem, a polytope is the same
thing as a bounded polyhedron, i.e. a bounded intersection of finitely
many half-spaces. From this description it is clear that the intersec-
tion of two polytopes is always a polytope. Each polytope can be
triangulated. The space of polytopes in V is denoted by P(V ).

Let ψ be a simple valuation on polytopes, i.e. ψ : P(V ) → C;
ψ(P ) = 0 if dimP < n and

ψ(P1 ∪ P2) = ψ(P1) + ψ(P2)− ψ(P1 ∩ P2)

whenever P1, P2, P1 ∪ P2 ∈ P(V ).
Claim: For P ∈ P(V ), there are complex numbers ψ0(P ), . . . , ψn(P )

such that

ψ(tP ) =
n∑

k=0

tkψk(P ), ∀t = 1, 2, 3, . . . .
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Proof of the claim: Since ψ is simple and P can be triangulated,
it suffices to show the claim in the case where P = ∆ is a simplex
(i.e. the convex hull of n + 1 points). We can fix our system of
coordinates in such a way that

P = ∆ = {(x1, . . . , xn)|1 ≥ x1 ≥ x2 ≥ . . . ≥ xn ≥ 0}.
For a permutation σ, we set

∆σ = {(x1, . . . , xn)|1 ≥ xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(n) ≥ 0}.
and for a = (a1, . . . , an) ∈ Zn, we set ∆a

σ = ∆σ + a.
The ∆a

σ recover V = Rn: for x = (x1, . . . , xn) there is a permuta-
tion σ such that {xσ(1)} ≥ . . . ≥ {xσ(n)} ({x} is the fractional part
of x and bxc the integer part). With ai := bxic, we have x ∈ ∆a

σ.

The intersection ∆a
σ ∩∆a′

σ′ is of dimension < n if (σ, a) 6= (σ′, a′).
We have for t = 1, 2, . . .

t∆ = {(x1, . . . , xn)|t ≥ x1 ≥ . . . ≥ xn ≥ 0}.
Hence t∆ is the union of those ∆a

σ with ∆a
σ ⊆ t∆.

Fix σ. Then ∆a
σ ⊆ t∆ ⇐⇒ t ≥ x1+a1 ≥ x2+a2 . . . ≥ xn+an ≥ 0

for all (x1, . . . , xn) ∈ ∆σ. This is the case if and only if

t− 1 ≥ a1?1a2?2 . . .?n−1an ≥ 0

where

?i =

{
≥ if i appears before i+ 1 in σ(1), . . . , σ(n)
> else.

Let k = kσ be the number of signs ≥. By changing variables, we
have

#{(a1, . . . , an)|t− 1 ≥ a1?1a2?2 . . .?n−1an ≥ 0}
= #{(a′1, . . . , a′n)|t+ k − 1 ≥ a′1 > a′2 > a′3 . . . > a′n ≥ 0}

=

(
t+ k

n

)
.

We deduce that

ψ(t∆) = ψ


 ⋃

∆a
σ⊆t∆

∆a
σ


 =

∑

σ,a|∆a
σ⊆t∆

ψ(∆a
σ) =

∑

σ

#{a : ∆a
σ ⊆ t∆}ψ(∆σ)

=
∑

σ

(
t+ kσ
n

)
ψ(∆σ).

This is a polynomial in t of degree ≤ n, which shows the claim.
(3) Claim: φ(tP ) is a polynomial in t of degree ≤ n for t = 1, 2, 3, . . .

(recall that in contrast to the last case, φ is not assumed to be
simple).

We use induction on n = dimV . The case n = 0 is trivial.
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For n ≥ 1, we define a simple valuation ψ on polytopes by using
a Euclidean structure and setting

β(P, F ) := lim
r→0

voln(P ∩B(x, r))

volnB(x, r)
, x ∈ relintF

ψ(P ) :=
∑

F

(−1)n−dimFβ(P, F )φ(F ).

In the first equation, F is a face of P , in the second equation, the
sum is over all faces of P .

Then ψ is a simple valuation on polytopes. From β(tP, tF ) =
β(P, F ) we obtain

ψ(tP )︸ ︷︷ ︸
polynomial in t

=
∑

F

(−1)n−dimFβ(P, F ) φ(tF )︸ ︷︷ ︸
polynomial in t if dimF<n by induction hyp.

The only face of dimension n is P itself, hence φ(tP ) is a polynomial
of degree ≤ n, i.e.

φ(tP ) =
n∑

k=0

tkφk(P ), ∀t ∈ N+, (1)

where φk(P ) is some constant depending on P and k.
(4) Taking n+ 1 pairwise different t’s and using the fact that the Van-

dermonde matrix is non singular, we can write φk(P ) as a linear
combination of the numbers φ(tiP ). However, P 7→ φ(tiP ) is a val-
uation, hence φk is also a valuation.

(5) Let q ∈ Q+. For t ∈ N+ such that tq ∈ N+, we have

φ(tqP ) = φ(t(qP )) =

n∑

k=0

tkφk(qP )

φ(tqP ) =

n∑

k=0

(tq)kφk(P ).

But there are infinitely many such t, hence we obtain φk(qP ) =
qkφk(P ) for all polytopes P .

(6) Let t ∈ Q+, then (replacing P by tP in (1))

φ(tP ) =

n∑

k=0

φk(tP ) =

n∑

k=0

tkφk(P ).

By continuity, this equation holds for all t > 0.
(7) Fix numbers 0 < t0 < . . . < tn. We obtain

φ(tiP ) =
n∑

k=0

tki φk(P ).
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Since the Vandermonde matrix is non-singular, there exist constants
ckj (which are independent of P ) such that

φk(P ) =
n∑

j=0

ckjφ(tjP )

for all polytopes P . We define φk on K(V ) by this equation, i.e.

φk(K) :=
n∑

j=0

ckjφ(tjK).

Since φ is continuous and translations invariant, we also have, φk ∈
Val. Polytopes being dense in K(V ), we get by continuity

φ(tK) =
n∑

k=0

tkφk(K).

In particular, (t = 1) φ = φ0 + . . .+ φn and φk ∈ Valk.
�

Corollary 1.2. Let C ∈ K(V ) be a fixed convex body with non-empty inte-
rior. The space Val becomes a Banach space under the norm

‖φ‖ = sup{|φ(K)| : K ⊆ C}.
Moreover, a different choice of C yields an equivalent norm.

Proof. It is not difficult to show that ‖ · ‖ defines a norm on Val and that
Val is complete with respect to the induced topology. Let C1, C2 ∈ K(V ) be
convex bodies containing the origin in their interior. We may assume that

C1 ⊆ C2 ⊆ aC1 (2)

for some constant a > 0. Consider the two norms on Val defined by

‖φ‖j = sup{|φ(K)| : K ⊆ Cj}, j = 1, 2.

Clearly, by (2), we have ‖φ‖1 ≤ ‖φ‖2 for every φ ∈ Val.
It remains to show that there is a constant c > 0 such that ‖φ‖2 ≤ c ‖φ‖1

for every φ ∈ Val. In order to see this, consider for fixed φ ∈ Val and
K ∈ K(V ) the function pK(t) := φ(tK), t ≥ 0. By McMullen’s theorem,
pK is a polynomial of degree at most n. Clearly, ‖φ‖j = sup{|pK(1)| : K ⊆
Cj}, j = 1, 2.

Since on the space of polynomials of degree at most n all norms are
equivalent, there exists a constant c > 0 (depending on n and a only) such
that for every polynomial q of degree at most n we have

|q(1)| ≤ c sup{|q(t)| : 0 ≤ t ≤ 1/a}.
Consequently, using (2) again, we obtain

‖φ‖2 ≤ c sup{|φ(tK)| : K ⊆ C2, 0 ≤ t ≤ 1/a} ≤ c ‖φ‖1.
�
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A valuation φ ∈ Val is called even if φ(−K) = φ(K) and odd if φ(−K) =
−φ(K). If φ is arbitrary, then φ = φ++φ− with φ+(K) := 1

2(φ(K)+φ(−K))

even and φ−(K) := 1
2(φ(K) − φ(−K)) odd. The McMullen decomposition

can thus be refined as
Val =

⊕

k=0,...,n
ε=±

Valεk .

2. Lecture 2: The Klain embedding

The aim of this lecture is a description of the space of even valuations of a
given degree. As a byproduct, we will obtain a proof of Hadwiger’s theorem.

Theorem 2.1 (Volume characterization, Klain [11]). Let µ be a continuous
valuation which is

(1) translation invariant,
(2) simple, i.e. µ(K) = 0 if dimK < n = dimV ,
(3) even, i.e. µ(−K) = µ(K).

Then there exists c ∈ C such that µ = cµn.

Proof. (1) We fix a basis B of V , which allows us to identify V and Rn.
Let c := µ([0, 1]n) and µ̃ := µ − cµn. Then µ̃ satisfies the same
properties as µ and moreover µ̃([0, 1]n) = 0. It is enough to show
that µ̃ = 0.

(2) We use induction on n in order to show that a simple, continuous,
translation invariant, even valuation µ with µ([0, 1]n) = 0 vanishes.
The induction start n = 1 is trivial. Let n > 1.

Since µ([0, 1]n) = 0, we deduce that µ([0, 1/k]n) = 0 for all k ∈ N:
indeed [0, 1]n is the union of translates of [0, 1/k]n and the pairwise
intersections are of smaller dimensions.

A box P with rational side lengths and faces which are parallel to
the coordinate axes can be cut into a finite number of such cubes.
Hence µ(P ) = 0. By continuity of µ, µ(P ) = 0 also if the side lengths
are not rational.

(3) Suppose n = 2. A parallelogram can be cut into a finite number of
pieces such that their translations form a parallelogram whose sides
are parallel to the coordinate axes.

(4)

SO(n,B) := {g ∈ SO(n)|g fixes at least n− 2 basis vectors of B}
Then each element g ∈ SO(n) is the product of a finite number of
elements in SO(n,B):

If ge1 = e1, then g fixes the space V ′ spanned by e2, . . . , en. Let
B′ := {e2, . . . , en}. g|V ′ ∈ SO(n − 1) =⇒ g|V ′ = g1 · . . . · gk with
g1, . . . , gk ∈ SO(n − 1,B′) by induction. Each gi can be extended
to an element g̃i ∈ SO(n,B) by setting g̃ie1 := e1. It follows that
g = g̃1 · . . . · g̃k.
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If v := ge1 6= e1, set v′ := v−〈v,e1〉e1
‖v−〈v,e1〉e1‖ ∈ span{e2, . . . , en}, ‖v′‖ =

1. There exists ψ ∈ SO(n) such that ψ(e1) = e1, ψv
′ = e2. Let ξ be

the rotation which fixes e3, . . . , en and which sends ψv ∈ span{e1, e2}
to e1. Then ξ ∈ SO(n,B) and η := ξ ◦ ψ ◦ g satisfies ηe1 =
ξψge1 = ξψv = e1. By the case which we already studied, there
exists ψ1, . . . , ψi, η1, . . . , ηj ∈ SO(n,B) with ψ = ψ1 · . . . · ψi and
η = η1 · . . . · ηj . Hence

g = ψ−1ξ−1η = ψ−1
i · . . . · ψ−1

1 ξ−1η1 · . . . · ηj︸ ︷︷ ︸
all in SO(n,B)

.

(5) For g ∈ SO(n,B), a box P can be de- and recomposed into the box
gP . Indeed, g fixes n− 2 coordinate axes and we can apply Step 3.
By Step 4, this is even true for all g ∈ SO(n). It follows by Step 2
that µ(P ) = 0 for all boxes.

(6) Let W be a hyperplane and Rn = W × R the orthogonal decompo-
sition. We define a valuation τ on W by

τ(K) := µ(K × [0, 1]).

Then τ is a continuous, translation invariant simple valuation which
vanishes on boxes in W . By induction τ = 0. Since µ is simple
and continuous, we obtain µ(K × [a, b]) = 0 for all a ≤ b. Hence µ
vanishes on all right cylinders with convex base.

(7) A cylinder which is not a right one (i.e. a prism) can be cut by an
affine hyperplane into two pieces which can be rearranged to get a
right cylinder (actually this is true if the height is large enough with
respect to the angle, which by additivity we can always achieve).
Hence µ vanishes on all cylinders.

(8) Let P be a convex polytope with facets (i.e. n−1-dimensional faces)
P1, . . . , Pm. Let ui be the normal vector to Pi. Fix v ∈ Rn \ {0}.
For each u, we either have 〈ui, v〉 > 0 or 〈ui, v〉 ≤ 0. Without loss of
generality, let P1, . . . , Pj the faces with 〈ui, v〉 > 0.

Then P + [0, v] is the union of P and the cylinders Pi + [0, v], 1 ≤
i ≤ j. Pairwise intersections are of smaller dimension. Since µ is
simple,

µ(P + [0, v]) = µ(P ) +

j∑

i=1

µ(Pi + [0, v])︸ ︷︷ ︸
=0, by Step 7

.

(9) A zonotope Z is a finite Minkowski sum of intervals. A zonoid is
the limit (in the Hausdorff topology) of a sequence of zonotopes. By
Step 8,

µ(P + Z) = µ(P )

for each polytope P . In particular, µ(Z) = 0. By continuity of µ,

µ(Y ) = 0, µ(K + Y ) = µ(K)
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for each zonoid Y and K ∈ K(V ). Here we use that polytopes are
dense in K(V ).

(10) Let K ∈ Ko(V ) (i.e. origin symmetric with non empty interior) with
smooth support function. Then for large r > 0, K + rB is a zonoid.
The proof of this fact uses the so called cosine function. Since rB is
a zonoid itself, we obtain µ(K) = µ(K + rB) = 0.

(11) A general convex body K ∈ Ko(V ) can be approximated by a se-
quence K1, . . . , of origin symmetric convex bodies with smooth sup-
port function. By continuity, µ(K) = limi→∞ µ(Ki) = 0. Hence µ
vanishes on Ko(V ).

(12) Let ∆ = [0, u1, . . . , un] be a simplex, v := u1 + . . . + un, P :=
[0, u1] + [0, u2] + · · ·+ [0, un]. Let E1 be the affine hyperplane going
through u1, . . . , un. Let E2 be the affine hyperplane going through
v − u1, . . . , v − un. Let P ∗ be the intersection of P with the strip
between E1 et E2.

Then

P = ∆ ∪ P ∗ ∪ (−∆ + v).

Since P ∗ is symmetric with respect to v/2, we have µ(P ∗) = 0. Since
µ is simple, translation invariant and even,

0 = µ(P ) = µ(∆) + µ(P ∗) + µ(−∆ + v) = 2µ(∆).

Hence µ vanishes on simplices.
(13) Let P be a polytope. Then P can be triangulated: P = ∆1∪. . .∪∆m.

Hence

µ(P ) =
m∑

i=1

µ(∆i) = 0.

(14) K ∈ K(V ) can be approximated by polytopes P1, P2, . . .. Hence

µ(K) = lim
i→∞

µ(Pi) = 0.

We thus finally have µ = 0.
�

Lemma 2.2 (Sah). Let ∆ be a simplex of dimension n. Then there exist
polytopes P1, . . . , Pm such that

∆ = P1 ∪ . . . ∪ Pm, dimPi ∩ Pj < n

and such that Pi is symmetric with respect to some affine hyperplane.

Proof. Let x0, . . . , xn be the vertices of ∆, ∆i the facet opposite to xi, z the
center of the inscribed circle in ∆, zi the orthogonal projection of z on ∆i.
We set

Ai,j := [z, zi, zj ,∆i ∩∆j ].

Then

∆ =
⋃

0≤i<j≤n
Ai,j , dimAi,j ∩Ai′,j′ < n.
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Ai,j is symmetric with respect to the affine hyperplane passing through z
and containing ∆i ∩∆j . �

Theorem 2.3 (Hadwiger, 1957). Let µ be a valuation on a Euclidean vector
space V of dimension n such that

(1) µ is continuous,
(2) µ is translation invariant,
(3) µ is rotation invariant, i.e. invariant under the group SO(n).

Then there exist constants c0, . . . , cn ∈ C such that

µ =
n∑

k=0

ckµk.

Proof. Let W ⊆ V be an affine hyperplane. µ|W is a continuous, translation
and rotation invariant valuation on W . By induction,

µ|W =

n−1∑

k=0

ckµk|W .

Let

µ̃ := µ−
n−1∑

k=0

ckµk.

Then µ̃|W = 0. Since µ̃ is invariant by rotations, it is simple.
If n ≡ 0 mod 2, then −Id ∈ SO(n) and µ̃ is even.
If n ≡ 1 mod 2, let ∆ = P1 ∪ . . . ∪ Pm as in Sah’s lemma. Since Pi is

symmetric with respect to some affine hyperplane, −Pi and Pi agree up to
a rotation. Hence

µ̃(−∆) =

m∑

i=1

µ̃(−Pi) =

m∑

i=1

µ̃(Pi) = µ̃(∆).

Using a triangulation and a continuity argument as before, we obtain that
µ̃ is even.

In both cases, by Klain’s theorem, µ̃ = cnµn with cn ∈ C. Then

µ =
n∑

k=0

ckµk.

�

Let φ ∈ Valk+. For E ∈ Grk(V ), the restriction φ|E is continuous, trans-
lation invariant. We claim that φ|E is simple. Otherwise, take a minimal
subspace F ⊆ E such that φ|F 6= 0. Then φ|F is simple. By Klain’s theorem,
φ|F = c volF . For K ∈ K(F ) we have φ(tK) = tkφ(K) since φ is of degree
k. On the other hand, φ(tK) = c volF (tK) = tdimFφ(K). But dimF < k,
which implies the contradiction φ|F = 0.

By Klain’s theorem, φ|E = c(E) volE with some constant c(E) ∈ C.
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Definition 1. The map Klφ : Grk(V ) → C, E 7→ c(E) is called Klain
function. It is continuous on Grk(V ).

Proposition 2.4 (Klain [12]). The Klain map Kl : Val+k → C(Grk(V )), φ 7→
Klφ is injective. Hence Val+k can be considered as a subspace of C(Grk(V )).

Proof. Clearly Kl is linear. We have to show that Klφ = 0 implies φ = 0.
Suppose that φ 6= 0. Let F be a subspace of minimal dimension with φ|F 6=
0. Then φ|F is simple. By the same argument as above, dimF = k and
φ|F = c volF , c 6= 0. On the other hand, c = Klφ(F ) = 0, contradiction. �

3. Lecture 3: Algebraic structures on the space of valuations

A representation of a Lie group G (which will be the general linear group
GL(n) in the following) on a Banach space X (which will be Val) is a
continuous map G×X → X, (g, x) 7→ gx such that x 7→ gx is linear, 1x = x
and g(hx) = (gh)x. A linear subspace Y ⊆ X is called invariant if gy ∈ Y
for all g ∈ G, y ∈ Y . There are two obvious examples of invariant subspaces,
namely Y = {0} and Y = X. The representation is called irreducible if
there are no other invariant and dense subspaces in X.

Remark:

(1) If dimX <∞, every linear subspace is closed.
(2) If the representation is irreducible, every invariant linear subspace is

either trivial or dense in X. This follows since the closure Ȳ is also
invariant, hence Ȳ = X.

In our situation X := (Val, ‖ · ‖) and G = GL(n). If g ∈ GL(n) and
K ∈ K(V ), then gK is also compact and convex. For φ ∈ Val, we define
gφ ∈ Val by

gφ(K) := φ(g−1K).

This is a representation of GL(n) on Val. The subspaces Val±k are invariant:

if φ ∈ Valk, then gφ(tK) = φ(g−1tK) = φ(tg−1K) = tkφ(g−1K) = tkgφ(K),
hence gφ ∈ Valk.

The next theorem is a milestone of modern integral geometry.

Theorem 3.1 (Alesker [1]). The representation of GL(n) on Valεk is irre-
ducible for each k = 0, . . . , n and each ε = ±.

The proof is far beyond the scope of these lecture notes.

Corollary 3.2 (McMullen’s conjecture [1]). Linear combinations of valua-
tions of the type K 7→ vol(K +A), A ∈ K(V ) are dense in Val.

Proof. Let Y be the space of all linear combinations of valuations of the
form K 7→ vol(K + A), A ∈ K(V ). We have to show that Ȳ = Val. Fix
k = 0, . . . , n and ε = ±. Then Y ∩ Valεk is a linear subspace of Valεk. This
space is invariant under GL(n), since Y and Valεk are invariant. For Y : if
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φ(K) =
∑m

i=1 ci vol(K +Ai) ∈ Y , then

gφ(K) =
m∑

i=1

ci vol(g−1K+Ai) =
m∑

i=1

ci vol(K+gAi) det g−1 =
m∑

i=1

c̃i vol(K+Ãi) ∈ Y

where c̃i := ci det g−1 and Ãi := gAi.
Claim: Y ∩ Valεk 6= {0}. We show this only for ε = +. It is enough to

construct one element in Y ∩ Valεk. Fix a Euclidean structure on V . For
r > 0, φr(K) := vol(K + rB) is in Y . We have φr =

∑n
k=0 ωkµn−kr

k by
Steiner’s formula. Let us fix 0 < r0 < . . . < rn. Then

φri =
n∑

k=0

ωkµn−kr
k
i , i = 0, . . . , n

is a system of linear equations on the µn−k which we can solve:

µn−k =

n∑

i=0

ckiφri ∈ Y ∩Val+n−k .

�

Definition 2. A valuation φ ∈ Val is called smooth if the map GL(V ) →
Val, g 7→ gφ is smooth (this is a map from a smooth manifold to a Banach
space). The space of smooth valuation is denoted by Valsm.

Example: intrinsic volumes are smooth; valuations of the type K 7→
vol(K+A) are smooth if A is strictly convex and smooth. Smooth valuations
are dense in the space of all valuations.

Theorem 3.3 (Alesker, [3]). There is a unique product structure on Valsm

such that if φi(K) = vol(K +Ai) for smooth and strictly convex Ai, then

φ1 · φ2(K) = vol(∆K +A1 ×A2),

where ∆ : V → V × V is the diagonal embedding.

The proof is rather difficult. Uniqueness follows from the fact that linear
combinations of valuations of the form K 7→ vol(K+A) are dense in Valsm.

The product is compatible with GL(n) in the following sense: for g ∈
GL(n), φ1, φ2 ∈ Valsm we have g(φ1 · φ2) = gφ1 · gφ2. In particular, if
φ1, φ2 are invariant under some subgroup of GL(n), then also the product
is invariant. From Hadwiger’s theorem it follows that for intrinsic volumes
we have µi · µj = ci,jµi+j . We will compute the constants later.

Theorem 3.4 (B’-Fu, [8]). There is a unique convolution product on Valsm

such that if φi(K) = vol(K +Ai) for smooth and strictly convex Ai, then

φ1 · φ2(K) = vol(K +A1 +A2).

Again, uniqueness is clear.
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Theorem 3.5 (Alesker [2, 4]). There is a Fourier type transformˆ: Valsm →
Valsm such that

φ̂1 ∗ φ̂2 = φ̂1 · φ2.

In the even case, it can be characterized as follows. If φ ∈ Valsm,+k , then

φ̂ ∈ Valsm,+n−k satisfies

Klφ̂(E) = Klφ(E⊥), E ∈ Grn−k(V ).

In the end of this lecture, we want to compute product and convolution
of intrinsic volumes.

First of all, µk ∈ Valsm,+k is characterized by its Klain function Klµk(E) =
1 for all E ∈ Grk(V ). Then by definition of the Fourier transform (in the
even case) we get

µ̂k = µn−k.

Next we compute the convolution. Let ωn be the volume of the n-
dimensional unit ball, and define the flag coefficient

[
n
i

]
:=

ωn
ωiωn−i

(
n

i

)
.

Recall Steiner’s formula:

vol(K + rB) =
n∑

i=0

µn−i(K)ωir
i.

Now fix r and s and define φ1(K) := vol(K+rB), φ2(K) := vol(K+sB).
Then

φ1∗φ2(K) = vol(K+rB+sB) = vol(K+(r+s)B) =
n∑

k=0

µn−k(K)ωk(r+s)k,

hence

φ1 ∗ φ2 =
n∑

i,j=0

µn−i−jωi+j

(
i+ j

i

)
risj .

On the other hand, since φ1 =
∑n

i=0 µn−iωir
i and φ2 =

∑n
i=0 µn−iωis

i, we
obtain

φ1 ∗ φ2 =
n∑

i,j=0

µn−i ∗ µn−jωiωjrisj .

Now compare the coefficient of risj in these equations:

µn−i−jωi+j

(
i+ j

i

)
= µn−i ∗ µn−jωiωj .

Writing i instead of n− i and j instead of n− j, we obtain

µi ∗ µj =

[
2n− i− j
n− i

]
µi+j−n. (3)
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Taking Fourier transform on both sides yields

µi · µj =

[
i+ j
i

]
µi+j . (4)

4. Lecture 4: Integral geometry of SO(n) and other groups

For a subgroup G of GL(n), let ValG denote the subspace of G-invariant
valuations.

Let G := SO(n) and V := Rn. We want to determine the integral
∫

G
µi(K + gL)dg.

For each fixed body L, the left hand side of this formula is a valuation in K.
It is easy to prove that this valuation belongs to ValG, hence (by Hadwiger’s
theorem) it may be written in the form

∑n
k=0 dk(L)µk(K). Next, fixing K,

one easily gets that dk is also an element of ValG for each fixed k, hence
dk(L) =

∑n
l=0 dklµl(L) with complex numbers dkl. We thus know that

∫

G
µi(K + gL)dg =

n∑

k,l=0

diklµk(K)µl(L)

for some fixed constants dikl. There is a nice trick to determine these con-
stants, which is called the template method. We plug in on both sides of
the equation special convex bodies K and L for which we may compute the
integral on the left hand side and the intrinsic volumes on the right hand
side to obtain a system of linear equations on the dikl. Solving this system
yields the dikl. More precisely, let us take K = rB,L = sB (where B is as
always the unit ball). Then we obtain

(r + s)i
(
n

i

)
ωn
ωn−i

=
∑

k,l

dik,lr
k

(
n

k

)
ωn
ωn−k

sl
(
n

l

)
ωn
ωn−l

.

Comparing the coefficients of rjsi−j on both sides gives us(
i

j

)(
n

i

)
ωn
ωn−i

= dij,i−j

(
n

j

)
ωn
ωn−j

(
n

i− j

)
ωn

ωn−i+j
.

We thus get
∫

SO(V )
µi(K + gL)dg =

[
2n− i
n− i

] ∑

k+l=i

[
2n− i
n− k

]−1

µk(K)µl(L). (5)

The same argument works also for the usual kinematic formula. For this,
we denote by SO(V ) the Euclidean motion group and normalize its Haar
measure in such a way that the measure of elements ḡ with ḡ(0) ∈ K equals
volK for each compact set K. Then we obtain
∫

SO(V )
µi(K ∩ ḡL)dḡ =

[
n+ i
i

] ∑

k+l=n+i

[
n+ i
k

]−1

µk(K)µl(L). (6)
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Theorem 4.1 (Alesker 2007, ). A compact subgroup G of SO(n), n ≥ 2 sat-
isfies dim ValG <∞ if and only if G acts transitively on the unit sphere. In
this case, every G-invariant, translation invariant and continuous valuation
is smooth.

The classification of connected compact Lie groups G acting transitively
on some sphere is a topological problem which was solved by Montgomery-
Samelson and Borel. There are six infinite lists

SO(n),U(n), SU(n), Sp(n),Sp(n) ·U(1), Sp(n) · Sp(1) (7)

and three exceptional groups

G2, Spin(7),Spin(9). (8)

Recently, kinematic formulas for the groups U(n), SU(n),G2, Spin(7) were
obtained [9, 7, 6]. The template method described above is not strong
enough to yield these formulas. Instead, one has to use a more algebraic
approach which we will describe now.

Let V be a Euclidean vector space and let G be a subgroup of SO(V )
which acts transitively on the unit sphere.

It was observed by Hadwiger that Valn = C voln. Define a pairing

ValG×ValG → C, (φ, ψ) 7→ 〈φ, ψ〉,
such that φ · ψ = 〈φ, ψ〉 voln.

Theorem 4.2 (Alesker 2003, [3]). The Alesker-Poincare pairing is non-
degenerate, i.e. the induced map

PDG : ValG → ValG∗, φ 7→ 〈φ, ·〉
is a bijection.

If φ1, . . . , φm is a basis of ValG, then by the same trick as above we obtain
kinematic formulas

∫

Ḡ
φi(K ∩ ḡL)dḡ =

m∑

k,l=1

cik,lφk(K)φl(L). (9)

There is a very nice and clever way to encode these formulas in a purely
algebraic way. Define the kinematic operator

kG : ValG → ValG⊗ValG

φi 7→
m∑

k,l=1

cik,lφk ⊗ φl.

This map is in fact a cocommutative, coassociative coproduct on ValG.
For instance, cocommutativity means that the following diagram com-

mutes:
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ValG
kG //

id
��

ValG⊗ValG

ι

��

ValG
kG // ValG⊗ValG .

Here ι is the map that interchanges the factors of ValG⊗ValG.
In more concrete terms, this says that the coefficients in the kinematic

formula (9) satisfy cik,l = cil,k, which expresses the symmetry of the formula

(in K and L).
The coassociativity property is the commutativity of the following dia-

gram:

ValG
(kG⊗id)◦kG

//

id
��

ValG⊗ValG⊗ValG

id⊗id⊗id
��

ValG
(id⊗kG)◦kG

// ValG⊗ValG⊗ValG .

This property is equivalent to the formula
∑

r

cir,mc
r
k,l =

∑

r

cir,lc
r
k,m,

and this comes just from Fubini’s theorem.

Theorem 4.3 (Fundamental theorem of algebraic integral geometry, [8]).
Let G be a group acting transitively on the unit sphere, mG : ValG⊗ValG →
ValG the restriction of the Alesker product to ValG; PDG : ValG → ValG∗

the Alesker-Poincaré duality and kG the kinematic coproduct. Then the
following diagram commutes

ValG
kG //

PDG
��

ValG⊗ValG

PDG⊗PDG
��

ValG∗
m∗G // ValG∗⊗ValG∗ .

The proof of this theorem is rather elementary and uses only some alge-
braic tricks.

Let us illustrate this theorem in the SO(n)-case. Let µ0, . . . , µn be the
intrinsic volumes and µ∗0, . . . , µ

∗
n be the dual basis, i.e. µ∗i (µj) = δij . Then

〈PD(µi), µj〉 = (µi · µj)n =





0 j 6= n− i[
n
i

]
i = n− j

Hence PD(µi) =

[
n
i

]
µ∗n−i. Next, we compute
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〈m∗G(PD(µi)), µa ⊗ µb〉 =

[
n
i

]
〈µ∗n−i, µa · µb〉

=

[
n
i

] [
a+ b
a

]
〈µ∗n−i, µa+b〉

=





0 i+ a+ b 6= n[
n
i

] [
a+ b
a

]
i+ a+ b = n

(10)

On the other hand,

k(µi) =

[
n+ i
i

] ∑

k+l=n+i

[
n+ i
k

]−1

µk ⊗ µl

and therefore

PD⊗ PD(k(µi)) =

[
n+ i
i

] ∑

k+l=n+i

[
n+ i
k

]−1 [
n
k

] [
n
l

]
µ∗n−k ⊗ µ∗n−l.

Then

〈PD⊗ PD(k(µi)), µa ⊗ µb〉 =

[
n+ i
i

] [
n+ i
n− a

]−1 [
n
a

] [
n
b

]
(11)

if a+ b+ i = n and zero otherwise.
Now one can check that (10) and (11) give the same result, since

[
n
i

] [
a+ b
a

]
=

[
n+ i
i

] [
n+ i
n− a

]−1 [
n
a

] [
n
b

]

if i+ a+ b = n.
Using convolution instead of product, one gets a similar theorem for ad-

ditive kinematic formulas, i.e. formulas of the type (5).
The real power of the method becomes evident when looking at other

groups, like G = U(n). Then the algebraic approach is much better than
the template method described above.
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