Benjamin Reichenwallner

Volumes of convex hulls of $n \le d+1$ points in *d*-dimensional convex bodies

The convex hull of $n \leq d+1$ points randomly chosen from a *d*-dimensional convex body K according to the uniform distribution in K forms an (n-1)-dimensional simplex with probability 1. We denote its volume by $V_{K[n]}$ and ask if for two *d*-dimensional convex bodies K and L and k > 0, $K \subseteq L$ implies $\mathbb{E}V_{K[n]}^k \leq \mathbb{E}V_{L[n]}^k$. In 2006, M. Meckes raised the question whether $K \subseteq L$ would imply $\mathbb{E}V_{K[d+1]} \leq \mathbb{E}V_{K[d+1]}^k$.

In 2006, M. Meckes raised the question whether $K \subseteq L$ would imply $\mathbb{E}V_{K[d+1]} \leq \mathbb{E}V_{L[d+1]}$. L. Rademacher gave an answer for the case n = d+1 and k = 1, when $d \neq 3$. Higher moments were investigated by Rademacher and Reichenwallner & Reitzner, only leaving the expected volume of a random tetrahedron in dimension three as an open task.

We give a similar result for n < d+1, showing that for k > 0 there exist two d-dimensional convex bodies K and L satisfying $K \subseteq L$, but $\mathbb{E}V_{K[n]}^k > \mathbb{E}V_{L[n]}^k$, unless $n \in \{3, 4\}$ and k = 1.