Julie Fournier

Deformations of Gaussian random fields: study based on the mean Euler characteristic of excursion sets

$Joint \ with \ Anne \ Estrade$

We denote by X a stationary and isotropic Gaussian random field defined on \mathbb{R}^2 and taking real values, such that almost every realization of X is of class C^2 . If $\theta : \mathbb{R}^2 \to \mathbb{R}^2$ is a diffeomorphism of class C^2 , we consider the deformed field defined by $X_{\theta}(x) = X(\theta(x))$. We assume that we know the Euler characteristic of excursion sets of X_{θ} above different levels and over rectangular sets and segments in \mathbb{R}^2 . Supposing no precise knowledge about the law of X, this allows us to get some information on the deformation θ . Adding the assumption that θ belongs to certain groups of deformations, we may get more information. We introduce the notion of "star-isotropic deformations". A star-isotropic deformation θ is characterized by the invariance of the mean Euler characteristic of any excursion set of X_{θ} over any rectangle T under orthogonal transformations of T.